Marketers in the programmatic digital ad space are no doubt familiar with the term “multi-touch attribution”, or MTA. When we speak of attribution in this context, we are speaking of a specific digital “touch” in the customer journey to which we can attribute more or less weight that leads to a “conversion”. A conversion is something measurable: it can be the click of a mouse, a visit to a website, a sale, or some other behavior desired by the marketer. The availability of data at the granular level (individual, behavior, time) has led to the field of analysis known as MTA modeling. Each touch along the attribution train may carry more or less weight depending on where it falls in the sequence of touches for each individual consumer.
Now enter the more recent notion of “walled gardens” (aka the ‘attribution apocalypse’). Major providers of digital data, e.g., Facebook, Google, Amazon, Apple, smart TV manufacturers such as Samsung, digital ad exchanges, first-party providers, and any other sources that monitor digital journeys (aka ‘digital exhaust’), are starting to say “we don’t want to play with you”. They are beginning to erect significant barriers to digital data access due to two key factors:
Ultimately, this is an economic decision that has to be made by the end user. How much information is a browser user willing to share in exchange for the convenience and power of the tools they now use for free? And how much of that information are browser developers willing to share with the media measurement companies that want their data?
The objective of all delivered media/advertising, and especially for MTA, is to “get the right ad to the right consumer at the right time”. The hidden assumption is that the consumer is always in the mood to receive the message, and that the consumer fully understands the message. In a world of screen clutter and six second ads, some companies are beginning to change their media and messaging strategy.
Up until this point, media and marketing measurement firms have enjoyed a good ride with MTA (such a pun). First-mover companies who are nimble, smart, and have deep pockets can implement big data projects like MTA. And they are achieving significant ROAS – often in the very high double-digit range. And, these companies are able to adjust their models in real time and can continue to reap significant rewards. But, as more competitors build MTA models (or the technology becomes less costly, or the tasks less daunting), a company’s relative advantage will diminish. Think of it as an “MTA trickle-down effect”.
Until then, I hope we do not lose sight of what brands are all about, and that some aspects of brands are simply not measurable. That is, after all, the essence of brands – and marketing.